Universidad Carlos III de Madrid (SPAIN)
About this paper:
Appears in: ICERI2013 Proceedings
Publication year: 2013
Pages: 231-240
ISBN: 978-84-616-3847-5
ISSN: 2340-1095
Conference name: 6th International Conference of Education, Research and Innovation
Dates: 18-20 November, 2013
Location: Seville, Spain
Modeling and simulation are essential ingredients of the analysis and design process in power electronics. They help engineers gain increased understanding of circuit operation. Power electronics covers many areas such as electronics, electromagnetics, power systems, simulation and computing and so on. It is a multidisciplinary subject, taught in universities at both Bachelor and graduate levels. Although this is an attractive area for students it can be difficult for them to grasp. Many of the circuits used in power electronics include inductors that consist of a ferrite core, a winding of copper wire and sometimes a coil former. The modeling of the ferrite inductors is a complicated task due to the nonlinearity of the magnetic fields and the great variety of shapes, sizes of the core and number of turns in the winding. Therefore, it is necessary to resort to modeling and simulation techniques as well as experimental measurements to understand circuit operation and obtain enough information to achieve a robust design.

We show how modeling, circuit simulation and experimental measurements can assist the teaching of power electronics at undergraduate and postgraduate levels. To do so we present a procedure that combines modeling, simulation and experimental measurements using real inductors. Our methodology can be applied to Bachelor and graduate students to help them understand the behavior of typical circuits such as power converters and the nonlinear physical phenomena involved in power electronics. Our procedure is based on the use of different programming and modeling techniques coupled together: A Computer Aided Design software (AutoCAD), a Finite Element Analysis software (Maxwell), two scientific calculus programs (Origin and Matlab), a numerical simulation program (Simulink) combined with Matlab, and finally, an electronic circuit simulation software (PSIM).

As the procedure is very laborious and complex, we have decided to divide it into four levels with growing complexity that can be applied to students at different educational stages.
The first and second levels can be used for Bachelor students and the third and fourth levels for graduate students.

The first level consists of four activities: design and construction of the inductors and transformers, preliminary experimental measurements at low current intensity, DC current experiments and AC current experiments. These activities can be suggested as optional additional work for the subject. The optimal organization would be individual or groupwork.

The second level focuses on the design, analysis and simulation of the inductors with ferrite cores using Finite Element Analysis. In general, the software based on this analysis has a visual interface and provides a physical and extremely useful perspective which helps students understand concepts that are difficult for them. As the simulations can be carried out in 2D or in 3D the instructor can propose different geometries and compare the 2D to 3D results.

For the third and fourth level we proposed applying the full procedure to a specific geometry and validated the results with experimental measurements for the case of a sinusoidal or a square waveform. This latter case is of great interest in power converters.
Our impression as instructors is that students improve the ability to search for and to assimilate information on their own, their oral expression and writing of technical reports.
Ferrite cores, circuit simulators, Finite Element Analysis, experimental measurements, Power Electronics.