L. Oliveira1, A. Figueira2

2University of Porto / CRACS INESC TEC (PORTUGAL)
The use of Social Media applications in educational settings has gained attention ever since educators became aware of their growing role in student’s daily routine. These arise as privileged tools for social interactions, information exchange, collaborative knowledge building, immediate communication and persistent attention retaining, among others. As a consequence, these tools impose themselves as complements to the profoundly established use of the traditional LMS, either being propelled by educators or requested by students.

In previous research we have already identified Facebook groups as one of the social media applications with the highest potential to foster the development of social learning communities. We have acknowledged the need to integrate Facebook groups and corresponding learning analytics into formal learning environments, such as the institutional LMS, and we have developed and presented a system which performs that integration.

However, as the educational settings diversify in terms of pedagogy, coursework and student’s profile and cultural background, we have identified the need to extend this integration to other social media tools, such as the instant messaging app WhatsApp, and to provide valuable learning analytics on its usage. Mobile, instant messaging based learning communities differ a lot from forum-alike communities, where threads, topics, conversations and interactions are easily trackable and, for instance, social network analysis can be conducted to profile members, roles and relationships.

Therefore, research presented in this paper adds to previous consolidated work both on the technological and analytical dimensions. We address the challenges posed by the integration of WhatsApp based learning analytics in the LMS Moodle, starting by the fact that, unlike Facebook groups, WhatsApp does not provide an API for developers, nor any stream of structured data that can feed a real-time monitoring system.

We then focus research on revealing an actual set of visual learning analytics that characterize a learning community of about thirty foreign master students, who used WhatsApp as a complementary tool during a semester. We discuss which type of learning analytics and corresponding visualizations best suit WhatsApp learning communities; what can educators draw from the analytics of such communities; and how that information can strengthen student assessment and profiling.