J. Lundberg, T. Nyström

Linköping University (SWEDEN)
High fidelity signage prototyping for public buildings is impractical to teach in Wayshowing classes with many students. To achieve high fidelity, the creation of signs that look like the final production signs is required (but which may differ in other respects, such as using other materials). However, a problem is that physical signs are impractical to deploy in buildings that are in use. Student work with prototype signage may disturb other activities that go on in the space. Access to unused buildings can also be problematic to achieve. It is furthermore impractical because any existing signage tends to interfere with student signage. In addition, it can be very time consuming to swap signage systems between student groups. The use of virtual reality can solve those problems for signage prototyping.

In the full paper we will present a course design utilizing virtual reality for Wayshowing. Virtual reality is often used for Wayshowing experiments and is then seen as a realistic substitute for reality. We see many of the same challenges as are presented in research as relevant for students to master. This includes for instance tests of sign legibility, comparing sign designs (through usage trials), and evacuation during stressful situations. It is beneficial to be able to conduct design activities addressing those challenges before investing in physical signs. Using 3D blueprints, Wayshowing design can even be carried out before actually constructing a building. Therefore, we believe that virtual Wayshowing will become an increasingly relevant skill in the future.

Here, we outline student Wayshowing design and evaluation activities as course modules and discuss benefits and student pre-requisites of using virtual reality. For usage in our course, an existing public building was modelled in high fidelity including light sources. This facilitates comparisons between modelled signage and reality. The virtual building was constructed as a 3D model in Autodesk Maya and 3D studio max. A wall size display of 3640 x1050 pixels was deployed to project the student designs. It provides a wide window of realistic size into the 3d world. This allows groups of students to view the designs and discuss them together on a shared screen. The course plan includes signage systems design and evaluation, as well as design and evaluation of individual signs. Each system of signs can be placed in a separate data file for deployment in the 3Dworld. They can then be evaluated using virtual walkthroughs, and different designs (from different student groups) can be compared. Typeface selection and detail design can also be evaluated with respect to for instance readability and placemaking. The placemaking design concerns how the signage fits and creates the identity and experience of the place. All aspects of the signage system contribute to placemaking as well as to more instrumental aspects such as informing. The signs contribute to the experience of what the place is about and the system of signs to the experience of the place as a whole.
Placemaking design also benefits from high fidelity, since fine details are important. The course can thus draw on a broad student background in subjects such as 3D modelling, typography, and information graphics design. The amount of study time and course topics is thus highly dependent on student academic background.