1 Universidad de la Rioja (SPAIN)
2 Universidad del Pais Vasco (SPAIN)
About this paper:
Appears in: INTED2009 Proceedings
Publication year: 2009
Pages: 1110-1121
ISBN: 978-84-612-7578-6
ISSN: 2340-1079
Conference name: 3rd International Technology, Education and Development Conference
Dates: 9-11 March, 2009
Location: Valencia, Spain
This work is the result of an initiative of the of some teachers of Engineering that attempts to prepare for the future of engineering by asking the question, “What will or should engineering education be like today, or in the near future, to prepare the next generation of students for effective engagement in the engineering profession in 2020?”

It accepts as a given that, first and foremost, engineering education must produce technically excellent and innovative graduates, but it does not attempt to define a “core” curriculum, recognizing that individual institutions need to design their own. It asks, rather, how to enrich and broaden engineering education so that those technically grounded graduates will be better prepared to work in a constantly changing global economy. It notes the importance of improving the recruitment and retention of students, and making the learning experience more meaningful to them. It discusses the value of considering changes in engineering education in the broader context of enhancing the status of the engineering profession and improving the public understanding of engineering.

Although the paper comments on education beyond the baccalaureate, its primary focus is undergraduate education, not the academic engineering research enterprise. The success of academic engineering research is undeniable. It helped shape this nation’s industrial capabilities and it continues to do so in an increasing degree as more complex products and systems based on advanced technologies are emerging in the marketplace and in the social and economic infrastructure. Many of the most hi-tech companies have been spun off from university research. The end of the Cold War and the shift from defense work has put pressure on university research to accept funding from industry for shorter term product- or process-oriented research.

Meanwhile, industry has decreased its own in-house fundamental engineering research, making it even more important that universities conduct advanced basic research. Thus, this is a part of the engineering education infrastructure that must be preserved, but, at the same time, it must not lead to the neglect of the undergraduate engineering education experience. Indeed, if domestic engineering students are energized by their undergraduate education experience, it will enhance the possibility that they will be retained and graduate as engineers and aspire to advanced degrees through the academic engineering research enterprise.

This report is intended to begin a dialog about reinventing engineering education, but it makes recommendations that are broader than the curricular challenges. In the spirit of considering engineering education as a system and as part of a system of systems, consideration is given herein to important factors such as improving the public’s understanding of engineering, its technological literacy, and education, which can have an important but indirect effect on engineering in terms of encouraging students to consider an engineering education and preparing them intellectually so that an engineering education is accessible to them.

education, engineering, curricular challenges.