DIGITAL LIBRARY
STEADY STATE GENETIC-BASED MACHINE LEARNING FOR NETWORK INTRUSION DETECTION (SSGBML-NID)
Al al-Bayt university (JORDAN)
About this paper:
Appears in: EDULEARN09 Proceedings
Publication year: 2009
Pages: 199-206
ISBN: 978-84-612-9801-3
ISSN: 2340-1117
Conference name: 1st International Conference on Education and New Learning Technologies
Dates: 6-8 July, 2009
Location: Barcelona ,Spain
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this research is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.
Keywords:
ssgbml, zcs, network intrusion detection, sga, ssga.